Abstract
ABSTRACT The distribution of baryons provides a significant way to understand the formation of galaxy clusters by revealing the details of its internal structure and changes over time. In this paper, we present theoretical studies on the scaled profiles of physical properties associated with the baryonic components, including gas density, temperature, metallicity, pressure and entropy as well as stellar mass, metallicity and satellite galaxy number density in galaxy clusters from z = 4 to z = 0 by tracking their progenitors. These mass-complete simulated galaxy clusters are coming from The Three Hundred with two runs: Gizmo-SIMBA and Gadget-X. Through comparisons between the two simulations, and with observed profiles that are generally available at low redshift, we find that (1) the agreements between the two runs and observations are mostly at outer radii r ≳ 0.3r500, in line with the self-similarity assumption. While Gadget-X shows better agreements with the observed gas profiles in the central regions compared to Gizmo-SIMBA; (2) the evolution trends are generally consistent between the two simulations with slightly better consistency at outer radii. In detail, the gas density profile shows less discrepancy than the temperature and entropy profiles at high redshift. The differences in the cluster centre and gas properties imply different behaviours of the AGN models between Gadget-X and Gizmo-SIMBA, with the latter, maybe too strong for this cluster simulation. The high-redshift difference may be caused by the star formation and feedback models or hydrodynamics treatment, which requires observation constraints and understanding.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.