Abstract

We show here the global, in time, regularity of the three dimensional viscous Camassa–Holm (Navier–Stokes-alpha) (NS-α) equations. We also provide estimates, in terms of the physical parameters of the equations, for the Hausdorff and fractal dimensions of their global attractor. In analogy with the Kolmogorov theory of turbulence, we define a small spatial scale, l ∈ , as the scale at which the balance occurs in the mean rates of nonlinear transport of energy and viscous dissipation of energy. Furthermore, we show that the number of degrees of freedom in the long-time behavior of the solutions to these equations is bounded from above by (L/l ∈ )3, where L is a typical large spatial scale (e.g., the size of the domain). This estimate suggests that the Landau–Lifshitz classical theory of turbulence is suitable for interpreting the solutions of the NS-α equations. Hence, one may consider these equations as a closure model for the Reynolds averaged Navier–Stokes equations (NSE). We study this approach, further, in other related papers. Finally, we discuss the relation of the NS-α model to the NSE by proving a convergence theorem, that as the length scale α 1 tends to zero a subsequence of solutions of the NS-α equations converges to a weak solution of the three dimensional NSE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call