Abstract
The three-dimensional solution structure obtained by NMR of the complex formed between the uniformly singly 15N and doubly 13C/ 15N-labeled vnd/NK-2 homeodomain and its consensus 16 base-pair DNA binding sequence was determined. This work was carried out using the accepted repertoire of experiments augmented with a novel implementation of the water flipback technique to enhance signals from exchangeable amide protons. The results using this new technique confirm the existence of hydrogen bonding between the invariant Asn51 and the second adenine of the DNA binding sequence, as seen in crystal structures of other homeodomain-DNA complexes, but never before detected by NMR. Hydrogen bonding by Arg5 and Lys3 in the minor groove of the DNA appears to be responsible for two unusually upfield-shifted ribose H1′ resonances. The DNA duplex is nearly straight and its structure is primarily that of B-DNA. A detailed comparison is presented for all available homeodomain-DNA structures including the vnd/NK-2 DNA complex, which demonstrates that homology is maintained in the protein structure, whereas for the orientation of the homeodomain relative to DNA, small but significant variations are observed. Interactions are described involving certain residues in specific positions of the homeodomain, namely Leu7, Thr41, and Gln50 of vnd/NK-2, where single amino acid residue mutations lead to dramatic developmental alterations. The availability of our previously determined three-dimensional structure of the vnd/NK-2 homeodomain in the absence of DNA allows us to assess structural changes in the homeodomain induced by DNA binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.