Abstract
We derive the explicit expression of the three self-energies that one encounters in many-body perturbation theory: the well-known GW self-energy, as well as the particle–particle and electron–hole T-matrix self-energies. Each of these can be easily computed via the eigenvalues and eigenvectors of a different random-phase approximation linear eigenvalue problem that completely defines their corresponding response function. For illustrative and comparative purposes, we report the principal ionization potentials of a set of small molecules computed at each level of theory. The performance of these schemes on strongly correlated systems (B2 and C2) is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.