Abstract

BioGlue Surgical Adhesive (CryoLife, Inc, Kennesaw, GA) is used to reinforce anastomoses during cardiovascular operations. Previous reports have raised concerns that adhesives may leak through suture-line needle holes and that resulting intraluminal glue may embolize. The purpose of this study was to determine if BioGlue leaks through anastomotic needle holes in aortic tissue and two common prosthetic graft materials. Polypropylene suture was used to create end-to-end anastomoses in gelatin-sealed woven polyester grafts (n = 45), expanded polytetrafluoroethylene (ePTFE) grafts (n = 45), and fresh porcine aortas (n = 45). An additional 45 anastomoses were created in ePTFE grafts using ePTFE sutures. The outer surface of each anastomosis was covered with BioGlue. Anastomoses underwent inspection with direct magnification or histology. BioGlue leaked through needle holes and into the lumen in 10% of anastomoses (18 of 180). Leaks were significantly more common in fresh aorta (10 of 45, 22%) than in prosthetic grafts (8 of 135, 6%; p = 0.003). Suture size did not significantly affect the incidence of leak. The use of ePTFE sutures did not eliminate BioGlue leakage. Prosthetic graft leaks created discreet round adhesive particles. In contrast, aortic tissue leaks resulted in thin, friable flakes of glue extending along the intimal surface. Aortic histology confirmed that BioGlue reached the vessel lumen via the suture channels. BioGlue leaked through the needle holes in fresh aortic tissue and prosthetic grafts. Intraluminal adhesive particles were easily dislodged, supporting concerns regarding embolization. The potential for adhesive embolization should be a factor when considering the relative risks and benefits of using BioGlue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.