Abstract

AbstractThe Late Cretaceous – Recent West Black Sea Basin and the Eocene–Oligocene Thrace Basin are separated by the Strandja arch comprising metamorphic and magmatic rocks. Since Late Cretaceous time the Strandja arch formed a palaeo-high separating the two basins which accumulated clastic sediment of >9 km thickness. During late Eocene – early Oligocene time the marine connection between these basins existed through the Çatalca gap west of Istanbul. The Çatalca gap lies on the damage zone of a major Cretaceous strike-slip fault; it formed a 15 km wide marine gateway, where carbonate-rich sediments of thicknessc.350 m were deposited. The sequence consists of upper Eocene shallow marine limestones (SBZ18-20) overlain by upper Eocene – lower Oligocene (P16-P19 zones) pelagic marl with a rich fauna of planktonic foraminifera; the marls are intercalated with 31–32 Ma acidic tuff and calc-arenite beds. The Çatalca gap is bounded in the west by a major normal fault, which marks the eastern boundary of the Thrace Basin. Seismic reflection profiles, well data and zircon U–Pb ages indicate that the Thrace Basin sequence west of the fault is late Eocene – middle Oligocene (37–27 Ma) in age and that the fault has accommodated 2 km of subsidence. Although there was a marine connection between the West Black Sea and Thrace basins during late Eocene – early Oligocene time, no significant exchange of clastic sediment took place. Sedimentation in the Çatalca gap ended abruptly during early Oligocene time by uplift, and this eventually led to the paralic conditions in the Thrace Basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call