Abstract
The solar corona and heliosphere are visible via sunlight that is Thomson-scattered off of free electrons, yielding a radiance against the celestial sphere. In this second part of a three-article series, we discuss linear polarization of this scattered light parallel and perpendicular to the plane of scatter in the context of heliopheric imaging far from the Sun. The difference between these two radiances, (pB), varies quite differently with scattering angle, compared to the sum that would be detected in unpolarized light (B). The difference between these two quantities has long been used in a coronagraphic context for background subtraction and to extract some three-dimensional information about the corona; we explore how these effects differ in the wider-field heliospheric imaging case where small-angle approximations do not apply. We develop an appropriately-simplified theory of polarized Thomson scattering in the heliosphere, discuss signal-to-noise considerations, invert the scattering equations analytically to solve the three dimensional object location problem for small objects, discuss exploiting polarization for background subtraction, and generate simple forward models of several classes of heliospheric feature. We conclude that pB measurements of heliospheric material are much more localized to the Thomson surface than are B measurements, that the ratio pB/B can be used to track solar wind features in three dimensions for scientific and space weather applications better in the heliosphere than corona; and that, by providing an independent measurement of background signal, pB measurements may be used to reduce the effect of background radiances including the stably polarized zodiacal light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.