Abstract

Pemphigus foliaceus (PF) is an autoimmune skin blistering disease mediated by pathogenic autoantibodies against the desmosomal core glycoprotein desmoglein-1 (Dsg1). This study demonstrated that the O-glycan-specific plant lectin jacalin binds Dsg1 and inhibits the interaction of Dsg1/PF IgG. N-glycosylation is not involved in the interaction of Dsg1/jacalin or Dsg1/PF IgG. Subcutaneous injection of jacalin into neonatal mice drastically reduced PF IgG deposition at the epidermal cell surface and blocked PF IgG-induced skin blisters, both clinically and histologically. Interestingly, another plant lectin, peanut agglutinin, which shares the same carbohydrate specificity toward the O-linked carbohydrate structure known as Thomsen-Friedenreich antigen (TF antigen, Galβ1-3GalNAcα-O-Ser/Thr), also bound Dsg1 and blocked the skin blistering. In contrast, the plant lectin vicia villosa-B4 (VVL-B4), which shares the carbohydrate specificity toward the O-linked monosaccharide known as Thomsen-nouveau antigen (GalNAc-α1-O-Ser/Thr), did not bind Dsg1 and did not show a protective effect against the disease induced by the autoantibodies. Collectively, these results suggest that the binding of jacalin to O-linked TF carbohydrate motifs on Dsg1 impairs the Dsg1/PF autoantibody interactions and abrogates its pathogenicity in vivo. TF-specific binding ligands may have a potential therapeutic value for PF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call