Abstract

An alternative to solve the problem of disposing dredged marine sediments (DMS) in open sea, which could lead to undesirable contamination and destruction of the marine ecosystem, is to reuse the material in reclamation works. For such applications, it is important to determine the time required for strength gain of the relocated DMS. A lab-based study was conducted to simulate and examine the post-consolidation hardening of DMS when placed as a backfill with relation to time. A separate series of tests were also carried out on the DMS being lightly solidified with cement, with the purpose of identifying potential shortening of the waiting period. The DMS sample was prepared at different water contents based on the soil's liquid limit (LL = 54.5 %), i.e. 0.90, 1.25 and 1.81LL. The undrained shear strength was measured using the laboratory vane shear (VS) test. Complementary fall cone (FC) tests were conducted for additional information on the improved remoulded strength and stiffness of the DMS. The results showed that the strength and stiffness (cone penetration resistance) of the relocated DMS could effectively improve with time, though the rest period required is shorter for a sample with lower initial water content. On the other and, light cementation shortened the rest period, and significantly improved the strength and stiffness at dosages as low as 5 % (as per dry weight of the soil). Overall the study gave an overview of the reusability of DMS as a backfill material in reclamation works, whether with or without lightly induced solidification, depending mainly on the limitations of rest period available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call