Abstract
We investigated third-signature granulation plots for 18 bright giants and supergiants and one giant of spectral classes G0 to M3. These plots reveal the net granulation velocities, averaged over the stellar disk, as a function of depth. Supergiants show significant differences from the 'standard' shape seen for lower-luminosity stars. Most notable is a striking reversal of slope seen for three of the nine supergiants, i.e., stronger lines are more blueshifted than weaker lines, opposite the solar case. Changes in the third-signature plot of {alpha} Sco (M1.5 Iab) with time imply granulation cells that penetrate only the lower portion of the photosphere. For those stars showing the standard shape, we derive scaling factors relative to the Sun that serve as a first-order measure of the strength of the granulation relative to the Sun. For G-type stars, the third-signature scale of the bright giants and supergiants is approximately 1.5 times as strong as in dwarfs, but for K stars, there in no discernible difference between higher-luminosity stars and dwarfs. Classical macroturbulence, a measure of the velocity dispersion of the granulation, increases with the third-signature-plot scale factors, but at different rates for different luminosity classes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.