Abstract
The aqueous CdTe quantum dots (QDs) were synthesized by the electrostatic reaction method. The optical properties of CdTe QDs were investigated by femtosecond Z-scan and time-resolved luminescence technique in nonresonant spectral region. The nonlinear absorption and refraction are ascribed to two-photon absorption, and time-resolved upconversion photoluminescence produces biexponential decay pattern at infrared femtosecond laser excitation. Upconversion luminescence is composed of a band-edge excitonic state and a photoinduced trapping state. The short-lived band-edge excitonic emission is independent of the detection wavelengths, and long-lived species becomes even longer with the increase of detection wavelengths, which indicates the size dependence of surface excitonic emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.