Abstract

Ferroelectric domain walls are quasi-2D systems that show great promise for the development of nonvolatile memory, memristor technology, and electronic components with ultrasmall feature size. Electric fields, for example, can change the domain wall orientation relative to the spontaneous polarization and switch between resistive and conductive states, controlling the electrical current. Being embedded in a 3Dmaterial, however, the domain walls are not perfectly flat and can form networks, which leads to complex physical structures. In this work, the importance of the nanoscale structure for the emergent transport properties is demonstrated, studying electronic conduction in the 3D network of neutral and charged domain walls in ErMnO3 . By combining tomographic microscopy techniques and finite element modeling, the contribution of domain walls within the bulk is clarified and the significance of curvature effects for the local conduction is shown down to the nanoscale. The findings provide insights into the propagation of electrical currents in domain wall networks, reveal additional degrees of freedom for their control, and provide quantitative guidelines for the design of domain-wall-based technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.