Abstract

The key attribute of the thiol-Michael addition reaction that makes it a prized tool in materials science is its modular “click” nature, which allows for the implementation of this highly efficient, “green” reaction in applications that vary from small molecule synthesis to in situ polymer modifications in biological systems to the surface functionalization of material coatings. Over the past few decades, interest in the thiol-Michael addition reaction has increased dramatically, as is evidenced by the number of studies that have been dedicated to elucidating different aspects of the reaction that range from an in-depth analysis aimed at understanding the mechanistic pathways of the reaction to synthetic studies that have examined modifying molecular structures with the aim of yielding highly efficient thiol-Michael reaction monomers. This review examines the reaction mechanisms, the substrates and catalysts used in the reaction, and the subsequent implementation of the thiol-Michael reaction in materials science over the years, with particular emphasis on the recent developments in the arena over the past decade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.