Abstract
Thinning rates of liquid lamellae in surfactant-free non-Newtonian gas–liquid foams, appropriate for ceramic or polymer melts and also in metals near the melting point, are derived in two dimensions by matched asymptotic analysis valid at small capillary number. The liquid viscosity is modelled (i) as a power-law function of the shear rate and (ii) by the Ellis law. Equations governing gas–liquid interface dynamics and variations in liquid viscosity are derived within the lamellar, transition and plateau border regions of a corner of the liquid surrounding a gas bubble. The results show that the viscosity varies primarily in the very short transition region lying between the lamellar and the Plateau border regions where the shear rates can become very large. In contrast to a foam with Newtonian liquid, the matching condition which determines the rate of lamellar thinning is non-local. In all cases considered, calculated lamellar thinning rates exhibit an initial transient thinning regime, followed by a t−2 power-law thinning regime, similar to the behaviour seen in foams with Newtonian liquid phase. In semi-arid foam, in which the liquid fraction is O(1) in the small capillary number, results explicitly show that for both the power-law and Ellis-law model of viscosity, the thinning of lamella in non-Newtonian and Newtonian foams is governed by the same equation, from which scaling laws can be deduced. This result is consistent with recently published experimental results on forced foam drainage. However, in an arid foam, which has much smaller volume fraction of liquid resulting in an increase in the Plateau border radius of curvature as lamellar thinning progresses, the scaling law depends on the material and the thinning rate is not independent of the liquid viscosity model parameters. Calculations of thinning rates, viscosities, pressures, interface shapes and shear rates in the transition region are presented using data for real liquids from the literature. Although for shear-thinning fluids the power-law viscosity becomes infinite at the boundaries of the internal transition region where the shear rate is zero, the interface shape, the pressure and the internal shear rates calculated by both rheological models are indistinguishable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.