Abstract

Abstract Early work on meteorite thermoluminescence, influenced by pottery dating and dosimetry applications, demonstrated a relationship between natural thermoluminescence and (1) the orbital perihelion of a meteorite and (2) the terrestrial age (time since fall) of a meteorite. For 14 years natural TL measurements were routinely made on newly recovered Antarctic meteorites to help identify unusual thermal and radiation histories, and to sort them by terrestrial age and perihelion. Two examples of the value of such data are presented, an Antarctic meteorite that underwent a major orbit change prior to fall and the collection mechanics of meteorites at the Lewis Cliff collection site. A second major area of focus for meteorite TL, that has no non-meteorite heritage, is the use of their induced TL to provide an extraordinarily sensitive and quantitative means of exploring metamorphic intensity and palaeothermometry. While especially valuable for unequilibrated ordinary chondrites, these types of measurement have proved useful with virtually every major class of meteorite, asteroidal and planetary. The challenge now is to extend the technique to small particles, micrometeorites, interplanetary dust particles, and cometary particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.