Abstract

Tunable devices based on photonic-crystal (PhC) structures are employed in optical sources, detectors, and filters. We present the design and optimization of a wavelength-selective tunable filter with potential applications to the wavelength-division-multiplexing (WDM) systems. We analyze the design of a 1D tunable photonic-crystal filter, where tunability is achieved either by changing the temperature or the angle of incidence. The device is designed in a multilayered structure of silicon/silica (Si/SiO2) with a defect in the middle. Based on the induced variation of optical parameters introduced by an external change of temperature, we analyze the effects of these changes in temperature on the transmission of the optical filter at different angles of incidence. We show that the position of the resonance peak has a linear dependence on temperature and the square of the angle of incidence. A linear regression provides a slope of dλ/dT = +0.06 nm/°C and dλ/dθ 2 = −0.104 nm/degree2 around the transmission wavelength λ = 1.55 μm. We obtain the corresponding field patterns and the transmission spectra using the transfer-matrix-method (TMM) simulations. We show the ability to tune the optical properties of the photonic-crystal filter elaborated by changing two parameters: the angle of incidence for selecting the wavelength and the temperature for fine tuning of the wavelength, which can be applied in integrated optics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call