Abstract

The effect of varying the ratio of slider to pad temperature boundary conditions and the influence of varying inlet to outlet ratio of a plane infinitely wide slider bearing is examined. The lubricant is assumed to be incompressible and the variation of viscosity with temperature is taken into account. The nondimensionalized governing equations, transformed in terms of the stream function, are solved numerically. The results show that maintaining a lower slider temperature to pad temperature ratio causes an increase in the load carrying capacity of the bearing. A means of which advantage could be taken of this effect in the design of thrust bearings is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.