Abstract

Patterning and etching substrates into mesas separated by trenches before the growth of mismatched (by about 1% or less) epitaxial layers considerably reduces the interface misfit dislocation density when the layer thickness exceeds the critical thickness. Such films are in a metastable state, since misfit dislocations allow the epitaxial layers to relax to an in-plane lattice parameter closer to its strain-free value. Thermal annealing (from 600 to 850° C) has been used to study the stability of these structures to explore the properties of the misfit dislocations and their formation. The misfit dislocation density was determined by counting the dark line defects at the InGaAs/GaAs interface, imaged by scanning cathodoluminescence. InGaAs epitaxial layers grown on patterned GaAs substrates by organometallic chemical vapor deposition possess a very small as-grown misfit dislocation density, and even after severe annealing for up to 300 sec at 800° C the defect density is less than 1500 cm−1 for a In0.04Ga0.96As, 300 nm thick layer (about 25% of the dislocation density found in unpatterned material that has not been annealed). The misfit dislocation nucleation properties of the material are found to depend on the trench depth; samples made with deeper (greater than 0.5 μm) trenches are more stable. Molecular beam epitaxially grown layers are much less stable than the above material; misfit dislocations nucleate in much greater numbers than in comparable organo-metallic chemical vapor deposited material at all of the temperatures studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call