Abstract

Linear, flexible macromolecules are long recognized as phase structures limited to micrometer and nanometer dimensions with covalent bonds crossing the interfaces. This special, usually non-equilibrium structure leads to unique properties and a multitude of changes for different thermal and mechanical histories. Analyses that enable the study of these properties are temperature-modulated calorimetry and related techniques which allow the separation of equilibrium and non-equilibrium responses. Research on these topics is reviewed and combined to a model for the nanophases. The new approach to the complex nanophase systems yields a better understanding of the relationship between structure and thermodynamic properties. Special emphasis is placed on the size and surface effects on the glass and melting transitions, the development of rigid-amorphous phases, and the reversible melting within the globally metastable structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call