Abstract

The ability to rationally design a copper oxide anode with superior rate performance that possesses an ultra-small particle size is highly desirable for lithium-ion batteries (LIBs). Herein, the rapid and effective thermal expansion exfoliation technology was employed to synthesize ultra-small CuOx nanoparticles (∼2.7 nm) uniformly dispersed on graphite oxide after popping (CuOx/Li-PGO), in which the addition of lithium promoted the exfoliation process to obtain an enlarged specific surface area and efficient transfer ability of PGO. The CuOx/Li-PGO electrode achieved a reversible capacity as high as 512.1 mA h g-1 under 2.0 A g-1 after 1000 cycles, demonstrating superior rate performance and cycling stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.