Abstract

This paper is concerned with the use of the nonlocal Timoshenko beam model for free vibration analysis of single-walled carbon nanotubes (CNTs) including the thermal effect. Unlike the Euler beam model, the Timoshenko beam model allows for the effects of transverse shear deformation and rotary inertia. These effects become significant for CNTs with small length-to-diameter ratios that are normally encountered in applications such as nanoprobes. The elastic Timoshenko beam model is reformulated using the nonlocal differential constitutive relations of Eringen (1972 Int. J. Eng. Sci. 10 1–16). The study focuses on the wave dispersion caused not only by the rotary inertia and the shear deformation in the traditional Timoshenko beam model but also by the nonlocal elasticity characterizing the microstructure of CNTs in a wide frequency range up to terahertz. Numerical results are presented using the nonlocal beam theory to bring out the effect of both the nonlocal parameter and the temperature change on the properties of transverse vibrations of CNTs. The exact nonlocal Timoshenko beam solution presented here should be useful to engineers who are designing microelectromechanical and nanoelectromechanical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call