Abstract
Non-equilibrium molecular dynamics (NEMD) simulation is performed to investigate thermal conductivities of two kinds of SiGe heterostructure nanowires (NWs), core(Si)/shell(Ge) and core(Ge)/(Si) NWs, using different interaction potentials between core and shell atoms. The influence of the proportion of core particles on the overall thermal conductivity of NWs is studied as well. Simulation results demonstrate that thermal conductivities of each kind of NWs with strong potential between core and shell atoms are higher than those of their counterparts with weak interaction between Si and Ge atoms. It is also found that thermal conductivities of both kinds of Si/Ge heterostructure NWs reduce with the decrease of the proportion of core atoms when the shell is not very thick.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.