Abstract

Thermal conductance of microbolometer has a directly impact on Noise Equivalent Temperature Difference (NETD) and thermal time constant which are the key indicators of uncooled IR detector. It is of great significance to calculate and evaluate thermal conductance. A calculate approach of thermal conductance for uncooled microbolometer detectors is introduced in this paper. Accurate three-dimensional modeling of microbolometer is found by using MEMS analysis software Intellisuite. Dynamic thermal analysis of this model is solved and then thermal time constant can be read from thermal time curve of the analysis mentioned above. Combined with the calculation of thermal capacitance, more precisely thermal conductance value can be reached which is more accurate than theoretical calculations result and meaningful for design and fabrication of the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call