Abstract

The nitrogenase Fe protein is a key component of the biochemical machinery responsible for the process of biological nitrogen fixation. The Fe protein is a member of a class of nucleotide-binding proteins that couple the binding and hydrolysis of nucleoside triphosphates to conformational changes. The nucleotide-dependent conformational changes modulate the formation of a macromolecular complex, and some members of the class include Galpha, EF-Tu, and myosin. The members of this class are highly interesting model systems for the analysis of aspects of thermal adaptability, since their mechanisms involve protein conformational change and protein-protein interactions. In this study, we have used our extensive knowledge of the structure of the Azotobacter vinelandii nitrogenase Fe protein in multiple structural conformations, and standard homology modeling approaches have been used to generate reliable models of the Fe protein from thermophilic Methanobacter thermoautotrophicus in the analogous structural conformations. The resulting structural comparison reveals that thermal adaptation of the M. thermoautotrophicus Fe protein is conferred by a number of factors, including increased structural rigidity that results from various structural changes within the protein interior. The analysis of hypothetical docking models and nitrogenase complex structures provides insights into the thermal adaptation of the protein-protein interactions that support macromolecular complex formation and catalysis at higher temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.