Abstract
Phosphodiesterase enzymes are responsible for the inactivation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Phosphodiesterase 4 (PDE4) is a cAMP specific phosphodiesterase expressed in inflammatory cells such as eosinophils. Inhibition of PDE4 results in an elevation of cAMP in these cells, which in turn downregulates the inflammatory response. The anti-inflammatory effects of PDE4 inhibitors have been well documented both in vitro and in vivo in a variety of animal models. The potential use of PDE4 inhibitors as anti-inflammatory agents for the treatment of asthma and other inflammatory disorders has received considerable attention from the pharmaceutical industry, but to date, there are no selective PDE4 inhibitors on the market. Early PDE4 inhibitors, typified by rolipram, suffered from dose-limiting side effects, including nausea and emesis, which severely restricted their therapeutic utility. Second generation compounds, including CDP840 and SB207499 (Ariflo™), have been identified with reduced side effect liability. Recent evidence suggests a correlation between side effects and the ability of compounds to bind at the so-called high affinity rolipram binding site (HPDE), whilst beneficial effects appear to correlate with binding at the catalytic site. A number of companies are actively pursuing compounds which exhibit improved affinity for the catalytic site and reduced affinity for the HPDE, in the expectation that this will provide compounds with an improved therapeutic index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.