Abstract

Epileptic encephalopathies are highly heterogeneous and phenotypical disorders with different underlying genetic defects. Mutations in the SCN2A gene cause different epilepsy syndromes, including epilepsy of infancy with migrating focal seizures, Ohtahara syndrome, and West syndrome. We utilized a targeted next generation sequencing (NGS) approach on a girl with early-onset seizures and Rett-like features, including autistic behavior, limited hand function with chorea, and profound intellectual disability, to identify novel missense mutation (c.1270G>A; p.V424M) in the SCN2A gene, which encodes the αII-subunit of the voltage-gated Na+ channel (Nav1.2). The identified SCN2A mutation responsible for the development of the disease is confirmed to be de novo for the proband. Our findings broaden the clinical spectrum of SCN2A mutations, which resembles clinical phenotypes of SCN1A mutations by manifesting as fever sensitive seizures, and highlights that SCN2A mutations are an important cause of early-onset epileptic encephalopathies with movement disorders. In addition, the use of levetiracetam to treat SCN2A epileptic encephalopathy, when Na+ channel-blocking anticonvulsants are ineffective, is also recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call