Abstract

Because negative pressure can stimulate vascular proliferation, improve blood circulation and promote osteogenic differentiation of bone marrow stromal cells, we investigated the therapeutic effect of negative pressure on femoral head necrosis (FHN) in a rabbit model. Animals were divided into four groups (n = 60/group): [1] model control, [2] core decompression, [3] negative pressure and [4] normal control groups. Histological investigation revealed that at 4 and 8 weeks postoperatively, improvements were observed in trabecular bone shape, empty lacunae and numbers of bone marrow hematopoietic cells and fat cells in the negative pressure group compared to the core decompression group. At week 8, there were no significant differences between the negative pressure and normal control groups. Immunohistochemistry staining revealed higher expression of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) in the femoral heads in the negative pressure group compared with the core decompression group. Transmission electron microscopy revealed that cell organelles were further developed in the negative pressure group compared with the core decompression group. Microvascular ink staining revealed an increased number of bone marrow ink-stained blood vessels, a thicker vascular lumen and increased microvascular density in the negative pressure group relative to the core decompression group. Real-time polymerase chain reaction revealed that expression levels of both VEGF and BMP-2 were higher in the negative pressure group compared with the core decompression group. In summary, negative pressure has a therapeutic effect on FHN. This effect is superior to core decompression, indicating that negative pressure is a potentially valuable method for treating early FHN.

Highlights

  • Organisms are continuously exposed to external mechanical stimuli, and within the body are required to maintain a number of static or dynamic mechanical interactions

  • Histology Histological examinations revealed that at weeks 4 and 8 postoperatively, trabecular bone shape, empty lacunae and bone marrow hematopoietic cell and fat cell numbers were improved in the negative pressure group compared with the core decompression group (Figure 3)

  • At week 8, there was no significant difference between the negative pressure and normal control groups

Read more

Summary

Introduction

Organisms are continuously exposed to external mechanical stimuli, and within the body are required to maintain a number of static or dynamic mechanical interactions. The effect of external physical force and internal stress on cell growth, morphogenesis and differentiation has attracted much scientific attention. Physical exercise causes the skeletal muscle cell volume to increase, becoming hypertrophic. In patients with hypertension, elevated blood pressure resulting from mechanical stimulation, causes vascular smooth muscle cell and cardiac myocyte hypertrophy. In another example, the development, functional maintenance and remodeling of cartilage tissue and tendon requires mechanical stimulation. Cell mechanical stimuli can regulate many functions, including growth, differentiation, gene expression, protein synthesis and apoptosis

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.