Abstract

Acne rosacea is a type of chronic dermatosis with the characteristics of erubescence, angiotelectasis and pustule formation. However, current treatment methods are limited due to the side effects. Artesunate demonstrated a promising therapeutic efficacy with a high safety margin. HaCaT cells were treated with antibacterial peptide LL‑37 to simulate rosacea caused by Demodex folliculorum (D. folliculorum) infection. Cell Counting kit 8 and flow cytometry assays were performed to measure cellular proliferation, apoptosis, the stage of the cell cycle and reactive oxygen species generation in order to determine the level of cell damage. Then the damaged cells were treated with different concentrations of artesunate and doxycycline to determine the therapeutic effect of artesunate. Pro‑inflammatory cytokines tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑6, IL‑8 and C‑C motif chemokine 2 (MCP‑1) were measured using an ELISA, while western blotting was used to detect the expression of Janus kinase 2 (JAK2) and signal transducer and transcription activator (STAT3). As a result, LL‑37 treated HaCaT cells decreased in cell viability, had an increased apoptotic rate and cell cycle arrest, indicating that cell damage caused by rosacea was simulated. In addition, upregulated concentrations of the pro‑inflammatory cytokines TNF‑α, IL‑6, IL‑8 and MCP‑1 were attenuated in the artesunate group in a dose‑dependent fashion, indicating the therapeutic effect of artesunate. Furthermore, higher concentrations of artesunate exhibited an improved effect compared with the doxycycline group. In addition, increased expression levels of JAK2 and STAT3 following treatment with LL‑37 suggested that rosacea caused by D. folliculorum infection may lead to inflammation through the JAK/STAT signaling pathway. In conclusion, the potential mechanism by which damage occurs in rosacea was revealed and a promising therapeutic method against rosacea was demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.