Abstract
A wavelet with composite dilations is a function generating an orthonormal basis or a Parseval frame for L 2(ℝn) under the action of lattice translations and dilations by products of elements drawn from non-commuting sets of matrices A and B. Typically, the members of B are matrices whose eigenvalues have magnitude one, while the members of A are matrices expanding on a proper subspace of ℝn. The theory of these systems generalizes the classical theory of wavelets and provides a simple and flexible framework for the construction of orthonormal bases and related systems that exhibit a number of geometric features of great potential in applications. For example, composite wavelets have the ability to produce “long and narrow” window functions, with various orientations, well-suited to applications in image processing.KeywordsOrthonormal BasisFundamental DomainGabor FrameGabor SystemParseval FrameThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.