Abstract

Toric manifolds, a topological generalization of smooth projective toric varieties, are determined by an n n -dimensional simple convex polytope and a function from the set of codimension-one faces into the primitive vectors of an integer lattice. Their cohomology was determined by Davis and Januszkiewicz in 1991 and corresponds with the theorem of Danilov-Jurkiewicz in the toric variety case. Recently it has been shown by Buchstaber and Ray that they generate the complex cobordism ring. We use the Adams spectral sequence to compute the K O KO -theory of all toric manifolds and certain singular toric varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.