Abstract

We present a model for steady state winds of systems with super-Eddington luminosities. These radiatively driven winds are expected to be optically thick and clumpy as they arise from an instability driven porous atmosphere. The model is then applied to derive the mass loss observed in bright classical novae. The main results are: 1) A general relation between the mass loss rate and the total luminosity in super-Eddington systems. 2) A quantitative agreement between the observed luminosity evolution which is used to predict both the mass loss and temperature evolution, and their observations. 3) An agreement between the predicted average integrated mass loss of novae as a function of WD mass and its observations. 4) A natural explanation for the `transition phase' of novae. 5) Agreement with eta Carinae which was used to double check the theory. The prediction for the mass shed in the star's great eruption agrees with observations to within the measurement error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.