Abstract

A knowledge of the dynamic characteristics of nozzles and orifices is important in many control and stability analyses of engineering devices. It is usual to assume that the instantaneous flowrate, for a given set of inlet conditions and outlet pressure, is the same as the nontransient value for the same operating conditions. Recently, in connection with the stability analysis of an externally pressurized thrust bearing, the validity of this assumption was questioned. The analysis presented in this paper was undertaken to provide an answer. The present analysis applies to any fluid, liquid, or gas flowing into a simple conical nozzle. The amplitude and phase of the mass-flux response to a sinusoidally time-varying pressure fluctuation at the nozzle exit are determined. An approximate formula is given for these quantities in terms of the nozzle throat area, the solid angle subtended by the cone, the velocity of the fluid at the nozzle throat, the acoustic velocity at the throat, and the frequency of the pressure fluctuation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call