Abstract

Two semiclassical ballistic transport models for thin films developed in 1971 treat the problem of "hot-electron" internal photoemission in Schottky-barrier diode IR detectors. Both formulations take into account multiple scattering from the surfaces as well as hot-electron-phonon and hot-electron-cold-electron collisions in the bulk. The models are compared for the case of uniform absorption and one of the models is then extended. The extensions incorporate the effect on internal quantum yield of small energy losses from electron-phonon collisions. Also, it is no longer assumed that the fraction removed by capture is small which insures that the yield cannot exceed the theoretical upper limit. The results are illustrated by Fowler plots over a range of scattering parameters and thicknesses germane to Schottky diodes of current interest, PtSi/Si and Pd <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> Si/Si. The main new features of the plots include curvature for photon energies close to the barrier energy due to phonon collision thermalization and roll-off at higher excitation energies whenever the yield is comparable in magnitude to the theoretical limit. The model is in good agreement with earlier Monte Carlo computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.