Abstract

Traditional approaches to human information processing tend to deal with perception and action planning in isolation, so that an adequate account of the perception-action interface is still missing. On the perceptual side, the dominant cognitive view largely underestimates, and thus fails to account for, the impact of action-related processes on both the processing of perceptual information and on perceptual learning. On the action side, most approaches conceive of action planning as a mere continuation of stimulus processing, thus failing to account for the goal-directedness of even the simplest reaction in an experimental task. We propose a new framework for a more adequate theoretical treatment of perception and action planning, in which perceptual contents and action plans are coded in a common representational medium by feature codes with distal reference. Perceived events (perceptions) and to-be-produced events (actions) are equally represented by integrated, task-tuned networks of feature codes--cognitive structures we call event codes. We give an overview of evidence from a wide variety of empirical domains, such as spatial stimulus-response compatibility, sensorimotor synchronization, and ideomotor action, showing that our main assumptions are well supported by the data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call