Abstract

In this chapter, we summarize the structure of the standard EW theory [Some recent textbooks are listed in Langacker (The standard model and beyond, CRC, Boca Raton, FL, 2010; Paschos, Electroweak theory (Cambridge University Press, Cambridge, 2007); Becchi and Ridolfi, An introduction to relativistic processes and the standard model of electroweak interactions, Springer, Berlin, 2006; Horejsi, Fundamentals of electroweak theory, Karolinum, Prague, 2002; Barbieri, Lectures on the electroweak interactions, Publications of the Scuola Normale Superiore, Pisa, 2007). See also Altarelli (The standard model of electroweak interactions. In: Landolt-Boernstein I 21A: Elementary Particles, vol. 3, Springer, Berlin, 2008) and Quigg (Annu Rev Nucl Part Sci 59:505, 2009).] and specify the couplings of the intermediate vector bosons W± and Z and those of the Higgs particle with the fermions and among themselves, as dictated by the gauge symmetry plus the observed matter content and the requirement of renormalizability. We discuss the realization of spontaneous symmetry breaking and the Higgs mechanism. We then review the phenomenological implications of the EW theory for collider physics, that is, we leave aside the classic low energy processes that are well described by the “old” weak interaction theory (see, for example, Commins, Weak interactions, McGraw Hill, New York, 1973; Okun, Leptons and quarks, North Holland, Amsterdam, 1982; Bailin, Weak interactions, 2nd edn. Hilger, Bristol, 1982; Georgi, Weak and modern particle theory, Benjamin, Menlo Park, CA, 1984).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call