Abstract

Coda waves are sensitive to changes in the subsurface because the strong scattering that generates these waves causes them to repeatedly sample a limited region of space. Coda wave interferometry is a technique that exploits this sensitivity to estimate slight changes in the medium from a comparison of the coda waves before and after the perturbation. For spatially localized changes in the velocity, or for changes in the source location, the travel-time perturbation may be different for different scattering paths. The coda waves that arrive within a certain time window are therefore subject to a distribution of travel-time perturbations. Here I present the general theory of coda wave interferometry, and show how the time-shifted correlation coefficient can be used to estimate the mean and variance of the distribution of travel-time perturbations. I show how this general theory can be used to estimate changes in the wave velocity, in the location of scatterer positions, and in the source location.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call