Abstract
We study local structure of a nonlinear mapping near points where standard regularity and/or smoothness assumptions need not be satisfied. We introduce a new concept of 2-regularity (a certain kind of second-order regularity) for a once differentiable mapping whose derivative is Lipschitz continuous. Under this 2-regularity condition, we obtain the representation theorem and the covering theorem (i.e., stability with respect to “right-hand side” perturbations) under assumptions that are weaker than those previously employed in the literature for results of this type. These results are further used to derive a constructive description of the tangent cone to a set defined by (2-regular) equality constraints and optimality conditions for related optimization problems. The class of mappings introduced and studied in the paper appears to be a convenient tool for treating complementarity structures by means of an appropriate equation-based reformulation. Optimality conditions for mathematical programs with (equivalently reformulated) complementarity constraints are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.