Abstract

The paper presents an analysis of the influence of the fuel spray geometry on the combustion and emission characteristic of the marine 4-stroke Diesel engine. Presented analysis was prepared based on computational fluid dynamic model (CFD). Initial and boundary conditions of the model as well as data used to model validation were collected during the laboratory study. Calculations were conducted for two different fuel injectors with changed nozzle holes diameters, the number of nozzle holes and the angle between holes axis. The increase of the fuel nozzle holes diameter causes the decrease of the fuel spray tip penetration, but simultaneously the decrease of holes number causes that auto-ignition delay is not changed. The increase of the angle between holes axis from 150° to 158° causes fuel ingintion near cylinder head wall. Result of this is the increase of CO fraction. The deterioration of fuel combustion causes the decrease of NOx mass fraction in the cylinder also.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.