Abstract
We investigate the influence of two-photon absorption (TPA) and free-carrier absorption (FCA) on phase-sensitive amplification (PSA) process in a dispersion engineered silicon strip waveguide at the telecom wavelengths. The phase-dependent gain and phase-to-phase transfer functions as well as the phase regeneration capacity of PSA are numerically analysed. It is found that TPA and FCA will suppress the phase-sensitive extinction ratio (PER) and the efficiency of phase squeezing. Moreover, the phase regeneration capability of silicon waveguide-based PSA is investigated by comparing the regenerated signal waveforms at a different signal power with/without TPA and FCA. Our results have potential application in all-optical signal regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.