Abstract

An interesting electroanalytical process for magnesium chlorate electrochemical determination has been described theoretically. The process involves the complex formation of magnesium cation with the azo dye Magnezone XC and the electropolymerization of the resulting complex compound in the presence of the chlorate-ion by two parallel mechanisms. The correspondent mathematical model has been developed and analyzed by means of linear stability theory and bifurcation analysis. It has been shown that from both electroanalytical and electrosynthetical points of view the system is efficient. The linear dependence between the electrochemical parameter and salt concentration is obtained easily, and the material formed during the electroanalytical process is highly conductive and catalytic. On the other hand, the oscillatory behavior in this system will be caused by double electric layer influences on both complexation and electropolymerization stages. DOI: http://dx.doi.org/10.17807/orbital.v12i4.1534

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.