Abstract

The prostate gland is one of the last internal organs to deteriorate during human decomposition; however, this phenomenon is still mysterious. Gene expression in antemortem cases has been widely studied and a majority of the analyses concentrate on discovering basic physiological processes. The question of “What happens to gene expression after a human dies?” is a novel and emerging topic. Thanatotranscriptome (thanatos-, Greek for death) involves research on mRNA transcript abundances and gene expression in human tissues after death. Our previous studies have shown that RNA is a suitable and stable molecule in postmortem liver samples up to two days. Consequently, we hypothesized that there are also measurable and significant differences in mRNA transcript abundances in prostate tissues from human remains. In the current study, the goal was to identify apoptotic molecular markers (i.e., pro- and/or anti-apoptosis genes) that provide accurate gene expression profiles regarding the time of death.Tissue samples were removed by a medical examiner from the prostate of five cadavers during autopsy. After RNA extraction, cDNA was synthesized and the concentration was determined. The cDNA was reacted in apoptosis-related gene expression profiling by human PCR Array. The PCR Array results showed that at 38 h after death, a majority of the genes for apoptosis induction and positive regulation (i.e., caspases) were over-expressed more than at five days. The expression of anti-apoptotic genes such as BAG1, BCL2, and negative regulator of apoptosis, XIAP, was significantly elevated in a time-dependent manner. However, pro-apoptotic gene expression such as TP53 and TNFSF10 was not significantly upregulated.Therefore, postmortem prostate cells counteract programmed cell death with its anti-apoptotic machinery; yet as time progresses, pro-apoptotic mechanisms dominate. In conclusion, our study implies that over-expression of genes in male reproductive organs still occurs during decomposition, which may play substantial roles in forensic research and clinical application. These findings demonstrate that there is still active postmortem gene expression; however, our future research question will be, “When does gene expression terminate after death?”

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call