Abstract

Abstract We measured the optical phase curve of the transiting brown dwarf KELT-1b (TOI 1476) using data from the TESS spacecraft. We found that KELT-1b shows significant phase variation in the TESS bandpass, with a relatively large phase amplitude of ppm and a secondary eclipse depth of ppm. We also measured a marginal eastward offset in the dayside hot spot of 183 ± 74 relative to the substellar point. We detected a strong phase-curve signal attributed to ellipsoidal distortion of the host star with an amplitude of 399 ± 19 ppm. Our results are roughly consistent with the Spitzer phase curves of KELT-1b, but the TESS eclipse depth is deeper than expected. Our cloud-free 1D models of KELT-1b’s dayside emission are unable to fit the full combined eclipse spectrum. Instead, the large TESS eclipse depth suggests that KELT-1b may have a significant dayside geometric albedo of A g ∼ 0.5 in the TESS bandpass, which would agree with the tentative trend between equilibrium temperature and geometric albedo recently suggested by Wong et al. We posit that if KELT-1b has a high dayside albedo, it is likely due to silicate clouds that form on KELT-1b’s nightside and are subsequently transported onto the western side of KELT-1b’s dayside hemisphere before breaking up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.