Abstract

Tertiary creep and necking of bars composed of creep damaging material are investigated subject to the condition of constant applied load. The creep-damage constitutive model employed in the study is based on the concept of constrained cavity growth which characterizes the phenomenon of grain boundary cavitation in polycrystalline metals under creep conditions. For a perfect bar, tertiary creep arises from the interaction of cavitation with the geometrical effect of uniform thinning of the area cross section. Two coupled differential equations governing the evolution of the axial strain and area cross section are obtained and solved for the case of linear strain dependent nucleation. Necking is analyzed by considering the deformation of an initially imperfect bar modelled as a series of disk elements. The governing equations are integrated in these elements subject to the approximation that stresses and strains remain uniform throughout the deformation. Results indicate that the mechanism of cavitation can significantly affect the creep response of both the perfect and imperfect bars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.