Abstract

AbstractThe constitution of the ternary system Ni/Si/Ti is investigated over the entire composition range using X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDS), differential thermal analysis (DTA), and metallography. The solid state phase equilibria are determined for 900 °C. Eight ternary phases are found to be stable. The crystal structures for the phases τ1NiSiTi, τ2Ni4Si7Ti4, τ3Ni40Si31Ti13, τ4Ni17Si7Ti6, and τ5Ni3SiTi2 are corroborated. For the remaining phases the compositions are determined as Ni6Si41Ti53 (τ6), Ni16Si42Ti42(τ7), and Ni12Si45Ti43 (τ8). The reaction scheme linking the solid state equilibria with the liquidus surface is amended to account for these newly observed phases. The discrepancies between previous experimental conclusions and modeling results are addressed. The liquidus surface is dominated by the primary crystallisation field of τ1NiSiTi, the only congruently melting phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call