Abstract

A review of structures and geometric relationships recognized in thrust belts is presented. A thrust is defined as any contractional fault, a corollary being that thrusts must cut up-section in their transport direction. ‘Flats’ are those portions of a thrust surface which were parallel to an arbitrary datum surface at the time of displacement and ‘ramps’ are those portions of thrusts which cut across datum surfaces. Ramps are classified on the basis of their orientation relative to the thrust transport direction and whether they are cut offs in the hangingwall or footwall of the thrust. Lateral variations in the form of staircase trajectories are joined by oblique or lateral ramps which have a component of strike-slip movement. An array of thrusts which diverge in their transport direction may form by either of two propagation models. These are termed ‘piggy-back’ propagation, which is foreland-directed, and ‘overstep’ propagation which is opposed to the thrust transport direction. An array of thrust surfaces is termed an ‘imbricate stack’ and should these surfaces anastamose upwards a ‘duplex’ will result; the fault-bounded blocks are termed ‘horses’. A duplex is bounded by a higher, ‘roof’ thrust and a lower, ‘floor’ thrust. The intersection of any two thrust planes is termed a ‘branch line’. Thrusts can be classified on the basis of their relationship to asymmetric fold limbs which they cut. A further classification arises from whether a particular thrust lies in the hangingwall or footwall of another one. The movement of thrust sheets over corrugated surfaces, or the local development of thrust structures beneath, will fold higher thrust sheets. These folds are termed ‘culminations’ and their limbs are termed ‘culmination walls’. Accommodation of this folding may require movement on surfaces within the hangingwall of the active thrust. These accommodation surfaces are termed ‘hangingwall detachments’ and they need not root down into the active thrust. This category of detachment includes dip-slip ‘hangingwall drop faults’ which are developed by differential uplift of duplex roofs, and ‘out-of-the-syncline’ thrusts which develop from overtightened fold hinges. Back thrusts, as well as forming as hangingwall detachments, may also form due to layer-parallel shortening above a sticking thrust or by rotation of the hangingwall above a ramp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call