Abstract

This paper demonstrates a method for calculating the tension of a system with a curved interface from a molecular dynamics simulation. To do so, the pressure of a subset of the system is determined by applying a local (virtual) mechanical deformation, fitting the response to that of a bulk fluid, and then using the Young-Laplace equation to infer the tension of the interface. The accuracy of the method is tested by calculating the local pressure of a series of water simulations at various external pressures. The tension of a simulated curved octane-water interface is computed with the method and compares well with the planar tension (≈ 46.7 dyn/cm). Finally, an ambiguity is resolved between the Harasima and Irving-Kirkwood methods of calculating the local pressure as a means for computing the tension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call