Abstract

Following a major fire test programme on a full-scale, steel-framed building it was found that the composite flooring system, comprising lightweight concrete, anti-crack mesh reinforcement and steel deck, had a greater inherent fire resistance than suggested by current codified design methods. It was felt that this was due to tensile membrane action occurring in the slab at large displacements. This led to an independent test being conducted at the Building Research Establishment where a 9.5 m×6.5 m composite slab, with nominal horizontal restraint to its edges, was tested to failure. To simulate the behaviour of the slab in fire, the steel deck was removed, leaving the concrete and anti-crack reinforcement, before load was applied. Tensile membrane action was shown to occur, with the failure load being approximately double that calculated using the classic yield line theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.