Abstract
In the present paper, the effect of B4C addition on elevated temperature tensile properties and creep resistance of as-cast Ti–43Al–6Nb–1Mo–1Cr alloy has been characterized. Experimental results reveal that 0.2 at. % B4C can improve the ultimate tensile strength and elongation of alloy at 800 °C. The steady-state creep rate of alloy with the addition of B4C decreases from 2.3 × 10−6 s−1 to 5.2 × 10−7 s−1 at 800 °C under 300 MPa. The stress exponent (n) and the apparent activation energy (QC) of alloy with the addition of B4C are measured to be 3.18 at 800 °C and 416.410 kJ/mol under 300 MPa, respectively. Combining microstructure observation, the dominant creep deformation mechanisms of Ti–43Al–6Nb–1Mo–1Cr-0.2B4C alloy at 800 °C under 300 MPa are mechanical twinning and dislocation slipping pinned by solute carbon atoms. During creep, the α2 lamellar dissolution and α2/γ interface migration occur simultaneously, and the dynamic recrystallization at colony boundary effectively alleviates the stress concentration resulting from dislocation pile-ups. In addition, the initiation of cavities as well as the propagation and coalescence of cracks are the main creep fracture features. Particularly, TiB can prevent dislocation motion and prolong the crack propagation path to increase creep resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.