Abstract
Short waste fibers are used to suppress the expansion and improve the tensile strength of cement-stabilized marine clay (CMC). The fiber-reinforced mechanism and characteristics are revealed by experimental and numerical methods. First, the curing effect of the CMC when adding a composite curing agent is observed by scanning electronic microscopy, as is the contact surface between the fiber and the matrix. Then, the expansion rate and the tensile strength of fiber-reinforced cement-stabilized marine clay (FCMC) are illustrated by an expansion experiment and a direct tensile experiment, respectively. The results show that the sample with the cement content of 0.1% and the fiber length of 10 mm is the best in terms of strength enhancement and expansion inhibition. Finally, the mechanism of fiber reinforcement is discussed following a single fiber pullout experiment and some comprehensive explanations are proposed to verify the results of the tensile experiment. A numerical simulation of a single fiber pullout from a matrix is established by using a cohesive contact model. The comparison between the numerical results and the experimental results shows that the two models can be in good agreement, indicating that the calculation model of the interaction between the fiber and the matrix is realistic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.