Abstract

Bayesian inference can be extended to probability distributions defined in terms of their inverse distribution function, i.e. their quantile function. This applies to both prior and likelihood. Quantile-based likelihood is useful in models with sampling distributions which lack an explicit probability density function. Quantile-based prior allows for flexible distributions to express expert knowledge. The principle of quantile-based Bayesian inference is demonstrated in the univariate setting with a Govindarajulu likelihood, as well as in a parametric quantile regression, where the error term is described by a quantile function of a Flattened Skew-Logistic distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.